自然換気中のダブルスキンファサード内の火災時煙流動性状に関する研究 A Study on Smoke Behavior through Double-Skin Façade in Fire under Natural Ventilation

1. 研究の背景・目的

ダブルスキン建築では、建物の外壁とそれを覆うガ ラスのカーテンウォール間の中空層において自然換気 や日射熱の吸収を図ることで省エネルギー性の向上を 目指している。特に中間期においては、竪穴空間である 中空層内に煙突効果による上昇気流を生じさせ、中空 層に接続された居室の自然換気を促している。この状 態で火災が発生した場合、中空層が煙の伝播経路とな り、早期に上階の居室へと煙が流入し、在館者の避難安 全に支障が生じる恐れがある。ダブルスキンやそれに 類する竪穴空間を通じた煙流動に関する研究の多くで は([1]など)初期状態としてすべての空間温度が外気温 と等しいものと仮定している。しかし、日射熱により外 壁面が加熱されて、中空層内に上昇気流が生じている 場合の煙流動性状や中性帯高さに関する研究は行われ ていない。

そこで本研究では、初期温度分布のある場合のダブ ルスキン中空層内及びそれに接続する居室への煙流動 性状の把握と、自然換気がその煙流動性状に与える影 響について調べることを目的とする。

2. ダブルスキン建築の火災における相似則 (1)中空層内の気流の相似則

本研究では、縮小模型実験によって煙流動性状の検 討を行う。そのため、実規模建物と縮小模型において流 れの相似性を保つための相似則を検討する必要がある。

ダブルスキン建築において発生した火災に起因する 中空層内の煙流動は、辻本ら[1]に倣い、粘性流体の質 量保存、運動量保存、及びエネルギー保存で表現さ れ、これらの支配方程式群を代表値を用いて無次元化 する。また、図1に示すように中空層内のコントロー ルボリュームの熱収支を考えることで、境界条件とし て式(1)が得られる。

$$\rho c_p A \frac{\partial T}{\partial t} + \rho c_p A v \frac{\partial T}{\partial z} \tag{1}$$

$$= -Bh(T - T_{g,i}) - BK_o(T - T_o)$$
この式を無次元化して式(2)を得る。

$$\frac{L_0}{v_0 t_0} \frac{\partial T^*}{\partial t^*} + v^* \frac{\partial T^*}{\partial z^*} = -B \frac{L_0}{A} \left(\frac{h}{\rho c_p v_0} T_{g,i}^* - \frac{K_o}{\rho c_p v_0} T^* \right)$$
(2)

以上の式展開により式(3)から(8)に示す無次元数群が 得られ、これらの無次元数を模型と実規模建物で合わ せることで、流れが相似となる。

$$\pi_1 = L_o / t_o v_o \tag{3}$$

$$\pi_2 = p_o / \rho v_o^2 \tag{4}$$

建築学専攻 原田研究室 林佳佑

$$\pi_3 = g\beta \Delta T_0 L_0 / v_o^2 = Ar \tag{5}$$

$$\pi_4 = Q_0 / \rho c_p v \Delta T_0 L_0^2 \tag{6}$$

 $\pi_5 = h/\rho c_p v_o = Nu(Re, Pr)/Pe \tag{7}$

$$\pi_6 = K_o / \rho c_p v_o \tag{8}$$

勝田ら[2]に倣い、ダブルスキン内の流れ場は、壁面近 くの乱流境界層はごく薄く、大部分が発達した乱流域 だと仮定し、 $v_t \propto vL$ 、 $\alpha_t \propto vL$ が成り立つものとする。 このとき、 $Re_t = vL/v_t$ 、 $Pe_t = vL/\alpha_t$ 、 $Pr = v_t/\alpha_t$ はそ れぞれ一定となる。よって π_5 は定数となり、 $\Delta T_{g,i} \geq \Delta T_o$ の縮率を合わせるために π_6 も定数とする必要がある。 よって、実規模建物と縮小模型における各物理量の縮 率は、長さスケールとアウタースキン側の熱貫流率の 縮率を用いて以下のように表される。

$$n(v) = n(h) = n(K) \tag{9}$$

$$n(Q) = n(K)^3 n(L) \tag{10}$$

$$n(t) = n(K)^{-1}n(L)$$
 (11)

$$n(p) = n(K)^2 \tag{12}$$

$$n(T) = n(K)^2 n(L)^{-1}$$
(13)

模型に用いる材料と2.2節で述べる実建物における一 般的なガラスの仕様からn(K)を設定し、模型での測定 値を実規模に換算する。

(2)日射熱流

本研究では、模型内の中空層側インナースキン表面 に設置したヒーターに通電することによって壁面の温 度を上昇させ、実建物において日射が当たっている状 況を再現する。定常状態における中空層内空気、及び インナースキン表面での熱収支から実験で設定すべき ヒーター表面温度を求める。実建物のガラスは、一般 的なダブルスキンを想定したものとし、表1に示す。

図2に示すような上下端以外に開口がない中空層に 日射が入射している状態を想定し、アウタースキンの 温度上昇や中空層内の日射と放射の相互反射を無視す

表1 想定するガラスの仕様

7	マウタースキ:	<i>·</i>	インナースキン			
フ	ロート10 [m	m]	Low-E複層 ⑧+A12+FL8 [mm]			
日射反射	日射透過	日射吸収率	日射反射率	日射透過率	日射吸収率	
率ρ _{g,o} [-]	率τ _{g,o} [-]	$\alpha_{g,o}$ [-]	$\rho_{g,i}$ [-]	$\tau_{g,i}$ [-]	$\alpha_{g,i}$ [-]	
0.067	0.762	0.170	0. 232	0.469	0.299	

ると、中空層内の熱収支は式(14)のように表される。

$$-\frac{c_p m}{B(K_o + K_i)} \frac{dI}{dz} = T$$

$$-\left(\frac{K_o T_o + K_i T_r}{K_o + K_i} + \frac{h - K_i}{K_o + K_i} \frac{l \tau_{g,o} \alpha_{g,i}}{h}\right)$$
(14)

また中空層内外の圧力差から、以下の式が成り立つ。

 $\rho_o g H = (m/C_D A)^2/2\rho_o + \bar{\rho} g H + (m/C_D A)^2/2\rho_u$ (15) 式(14),(15)を連立し、境界条件として中空層内熱伝 達率及びガラスの熱貫流率が風速によって変化するこ とを仮定し、反復計算を行うことで中空層内温度、イ ンナースキン表面温度、質量流量を求める。

(3)火災室から流出する煙の熱流量

(1)で示した相似則は中空層内の気流について成り 立つものであり、熱量の縮率n(Q)については、火源の 発熱速度ではなく、火災室から中空層へ流入する煙の 熱流量を合わせる必要がある。図3に実規模建物の居 室における火災の様子と模型において火災を再現する 居室の様子を示す。火災室においては、室内で煙と空 気の二つの層が形成されるものと仮定し、プリューム 流量及び各開口部の質量保存の式、煙層の熱収支の式 及び下部開口から流入し上部開口から流出する空気の エネルギー保存の式を連立することで、室の形状と火 源の発熱速度Qsから、式(16)で表される、室から流出 する煙の熱流量Qeを求める。

$$Q_e = 0.076 Q_s^{\frac{1}{3}} z_r^{\frac{5}{3}} c_p \frac{Q_s}{0.076 Q_s^{\frac{1}{3}} z_r^{\frac{5}{3}} c_p + h_{w,c} A_{w,c}}$$
(16)

また、模型室においては火源の代わりに床面にヒータ ーを設置し、室内の空気を加熱することで火災による 熱気流を再現する。模型室内は均一に温度が上昇する ものと仮定し、熱収支式及び下部開口から流入し上部 開口から流出する空気のエネルギー保存式を連立して 解くことで、室の形状とヒーターの熱量Q_mから、式 (17)に示す上部開口から流出する熱流量Q_{em}を求め る。

$$Q_{e,m} = 353C_D A_{e,m} c_p \sqrt{\frac{2gH_{r,m}(T_{r,m} - T_o)^3}{T_{r,m}T_o(T_{r,m} + T_o)}}$$
(17)

模型におけるヒーターの熱量 Q_m から $Q_{e,m}$ を求め、 $n(Q) = Q_{e,m}/Q_e$ から Q_e に換算することで実火災の発熱 速度 Q_s を求める。

3.縮小模型実験による煙流動性状の把握 (1)縮小模型の概要

図4に模型の概観を示す。模型は1/10スケールであ り、5層の居室がダブルスキンによって接続されてい るものである。居室は幅 370mm×奥行 370mm×高さ 360mm であり、片側の壁を硬質塩ビ板(2mm 厚)と した以外は床及び周壁は厚さ 20mm のスタイロフォー ムで作成した。ダブルスキンのアウター側には厚さ 2mmの硬質塩ビ板を用い、インナー側表面から 50mm 離して設置した。ダブルスキンの側面は、片側は煙流 動目視のため硬質塩ビ板、もう一方はスタイロフォー ムで作成し、ダブルスキン側面からの煙の流出を防止 した。ダブルスキンと各層の居室上部は幅 300mm×高 さ 50mm のスリットで接続されており、これに正対す る居室壁面の床レベルにも同寸法のスリットを設け、 外気に開放した。1階を火災室と想定し、床面に幅 250mm×奥行き 300mm のシリコンラバーヒーターを設 置し、変圧器により供給する電力量を調整することで 火災室内を加熱し、中空層に流入する煙を再現した。 また各居室の中空層側インナースキン表面にも同寸法 のヒーターを設置し日射による温度上昇を再現した。 (2)測定項目及び実験条件

各実験において、ヒーターに通電し定常状態に達し たことを確認した後、図4に示す点で温度と風速を測 定し、30秒間の平均値を算出した。また実験条件を表 2に示す。火源ヒーターへの供給電力、外気側スリット の開閉、中空層側インナースキン表面温度を実験パラ メータとし、実験1及び2では2層目から5層目の外 気側スリットの開閉により中空層と居室間の空気の流 出入、実験2から実験5では火源の大きさ、実験2及 び実験6、7では壁面にあたる日射量の影響を調べた。 実験6、7における壁面温度は、2.2節に従い決め

る。鉛直面日射量I [W/m²]を中間期の15時、12時を 想定した400、800とした場合のインナースキン表面 温度を計算し、 $n(\Delta T_{g,i}) = 1.696$ となるように壁面ヒー ターに供給する電力を調整した。模型において設定す るインナースキン表面温度 $T_{g,i}$ [°C]の気温との差の計 算値を図5に示す。

(3)実験結果

図6に実験2から4の各空間の温度測定値の気温と の差(上昇値)を示す。火災室から中空層へ熱気流が流 入し、上昇していくにつれて指数関数的に温度が減衰 している。また火源が大きくなるにつれ、上層のスリッ ト及び居室上部の温度が上昇しており、中空層から居 室へ熱気流が流入していることが分かる。

図7に実験2と実験7の流れの様子を示す。それぞれ 左に流れの可視化画像、中央に中空層内温度分布、右に 鉛直上向きの風速分布を示している。火源ヒーターの 電力は同じであるが、壁面の温度上昇によって、中空層 内の温度は上昇し、煙突効果により風速が上昇してい る。また実験2では中空層中央部よりアウター及びイ ンナースキン付近の方が温度が低く、両スキン側に熱 が流出している。一方、実験7ではインナースキン側 からアウタースキン側に向けて温度が低下し、また中 空層2層目から上端にかけてほぼ温度が一定であり、 アウタースキンから流出するのと同程度の熱がインナ ースキンから流入していることが分かる。また実験2で は4,5層目の居室に中空層から煙が流入しているが実 験7では5層目の居室にしか煙が流入しなかった。

図8に実験2、7の圧力差分布を示す。これは、各開 口において質量流量から圧力差を求め、それぞれの空

表2 実験条件(※実験5では風速のデータ欠損)

		実規模			
No	火源ヒー ター電圧 [V]	火源ヒータ 一電力 [W]	気温 [℃]	2-5ス リッ ト	鉛直面 日射量 [W/m ²]
1	40	96	14.7	閉	0
2	40	96	13.9	開	0
3	20	24	14.2	開	0
4	60	216	14.0	開	0
5	100	600	19.9	開	0
6	40	96	13.7	開	400
7	40	96	14.4	開	800

間内の鉛直温度分布から換算したものである。それぞ れ左から外気と中空層間、中空層と居室間、居室と外気 間の圧力差分布である。1層目スリット付近では両実験 にあまり差はないが、中空層を上昇していくにしたが い、実験7では実験2よりも空気が多く流入しており、 上端部では圧力差がかなり大きくなっている。

図 8 圧力差分布

Ξ

階床面からの高さ

m

1階床面からの高さ

1.44

1.08

0.72

0.36

-0.5

0.0

圧力差[Pa]

(4)熱伝達率の推定

各実験において、火災室スリットより上部での壁面 での熱収支と、気流により運ばれる熱の流出入による 熱収支が一致するように、中空層内の熱伝達率を推定 した。各実験における中空層内平均風速と推定した対 流熱伝達率を示したものを図9に示す。2.1節において π_5 を定数として導いたので、中空層内の平均流速vと対 流熱伝達率hは比例関係にある。静穏な室内の対流熱伝 達率の実用値が4.1kW/m²Kであることから回帰直線を 求めると、h = 11.42v + 4.1であった。実験値と回帰直 線の相関は低く、実験における風速の測定誤差の影響 が大きいと考えられる。

4. 実規模建物での検討

2章の相似則をもとに、実験の結果を実規模建物で の火災時の煙流動に換算する。図10にモデル建物を 示す。居室が30m×30m×3.6mの5階建て、居室上 端に高さ0.5mの換気口があり、中空層と接続され、 正対する壁面の床レベルにも同寸法の換気口があり、 外気と接続されている。ダブルスキンの幅は0.5m、 使用されているガラスは表1と同様とする。

1 階で火源の発熱速度が 450kW の火災が発生し、気 温が 20℃であるときの鉛直面日射量による温度分布及 び風速分布の変化を図 11,12 に示す。風速は中空層内 については上昇方向の、スリット部の流れについては 居室から中空層への方向を正で示している。また表 3 に上階スリット部の質量流量 m[kg/s]及び熱流量 Q[kW]を示す。表 3 に示すように日射量が増加する と、上階に流入する煙の質量が減少する傾向にあっ た。熱流量に関しても、火災室から流入した煙の熱流 量はそのほとんどが壁面や中空層上端から流出し、ス リットを通じて居室に流入する熱量は小さい。また日 射量によって火災室から中空層へ流入する質量流量及 び熱流量はほぼ変化しないが、図 12 に示すように中

図9 煙層平均風速と熱伝達率の関係

空層下端及び2,3 階の居室から中空層へ流入する風速 が増加することから、煙が希釈され、毒性や視認性の 面の危険性も低下していると考えられる。

5.結論

縮小模型実験によりダブルスキン中空層内における 煙流動性状を確認し、実規模建物モデルでの検討を行った。その結果、自然換気時では上階の居室に流入す る煙の量が減少する傾向にあり、また煙が希釈される ことで危険性が低下する可能性が示唆された。

【参考文献】

[1]仁井大策、他2名;ダブルスキンの火災安全上の課題に関する実験的検討(その3)煙流動に関する基礎的検討,日本建築学会学術講演梗概集 2015(防火),367-368,2015-09-04

[2] 辻本誠、他3名;一部に開口のある空間での煙流 動に関する模型実験 大規模空間での初期火災時にお ける煙流動に関する研究 第一報,日本建築学会構造系 論文集,第488号,1996年10月

[3] 勝田高司、土屋喬雄;室内空気分布の模型実験法 に関する研究 第1報一室内空気分布の実用的相似則, 空気調和・衛生工学会論文集, No.17, 1981 年 10 月

【記号】A:中空層断面積[m²] B:中空層奥行[m] C_D :流量 係数[-] c_p :空気の定圧比熱[J/(KgK)] g:重力加速度 [m/s²] H:ダブルスキン高さ[m] h:対流熱伝達率 [kW/m²K] I:鉛直面日射量[W/m²] K:熱貫流率[kW/m²] L:長さ[m] m:質量流量[kg/s] n:縮率[-] p:圧力[Pa] Q:熱 量[kW] T:温度[K] T_0 :気温[K] t:時間[s] v:風速[m/s] z: 中空層内高さ[m] z_r :天井高[m] α_t :渦温度拡散係数 [m²/s] β :体積膨張率[1/K] v_t :渦動粘性係数[m²/s] ρ :空 気密度[kg/m³] Ar:アルキメデス数[-] Nu:ヌセルト数[-] Pe: ペクレ数[-] Pr: プラントル数[-] Re: レイノルズ数[-] 【添え字】c:天井 e:居室上部開口 g:ガラス i:インナー スキン m:模型 o:代表値、アウタースキン r:居室 s:火 源 u:中空層上端 w:壁面

図 11 温度分布 (左: OW/m²、中央 400W/m²、左 800W/m²)

図 12 風速分布 (左: 0W/m²、中央: 400W/m²、左: 800W/m²) 表 3 居室から中空層へ流入する質量・熱流量

階	0 [W/m ²]		$400 [W/m^2]$		800 [W/m ²]	
数	質量	熱流	質量	熱流	質量	熱流
	流量	量	流量	量	流量	量
	[kg/s]	[kW]	[kg/s]	[kW]	[kg/s]	[kW]
5	-1.03	-1.78	0.00	0.00	-0.20	-0.60
4	0.00	-0.01	0.00	0.00	0.22	0.43
1	12.76	82.75	12.93	79.00	12.96	85.04