ダウンプルームによる煙の巻き込み量の測定方法の検討と予測式の提案 Development of measurement method of smoke entrainment by down plume and proposal of a prediction formula

建築学専攻 原田研究室 市川修暉

## 研究の背景と目的

産業用施設では、外界と隔離するために躯体の気密 性が高く、常時機械換気が行われる空間がある。特に、 汚染物を扱う空間では火災発生後も換気を継続して内 部を負圧に保つことが必要となる。

給気口が天井面にある室で火災が発生し、室上部に 蓄積した煙層中に新鮮空気が供給されると、給気がダ ウンプルームとなって煙を巻き込みながら下部層へと 向かう。煙の一部が下部層に運搬されて下部層を汚染 する危険がある。

室上部での機械換気を継続させた状態での火災を想 定した実規模実験<sup>[1][2]</sup>がいくつか行われており、火災性 状の把握と予測が試みられているが、煙層への給気が 巻き込んだ煙による下部層の汚染の程度を把握するた めには、給気による煙の巻き込み量を定式化する必要 がある。本研究の目的は、給気から生じたダウンプル ーム(鉛直下向きの自由噴流)による煙の巻き込み量 を模型実験で測定し、給気量及び煙と給気の温度差を 固定した場合に煙層厚さと煙の巻き込み量との関係を 明らかにすることである。

## 2. 模型実験の方法

## 2.1. 実験装置の概要

実験装置の概要を図1に、火災室の内観を図2に示 す。実験装置は一つの大きなチャンバーになっており、 天井板によって上部空間と火災室(1.8m(W)×1.8m(D) ×1.2m(H))に分割されている。上部空間に供給された 空気は正方形吹出し口(100×100mm)を通って火災室に 吹き出される。

火災室にはガスバーナー火源を設置し、都市ガス 13A を燃焼させて煙を発生させた。開口部に取り付け た垂れ壁によって煙を蓄積させ、火源の高さ、発熱速 度、垂れ壁の深さ、排気量を調節して煙層厚さと温度 を制御した。煙の冷却を防ぐため、表壁面と天井面に はセラミックボードを貼付けて断熱した。

ダウンプルームの広がりを把握し、煙層の境界面を 通過する質量流量を測定するため、吹出し口下方で温 度、炭酸ガス濃度および下向き風速の分布をトラバー ス装置に設置したセンサーで測定した。

また、噴流の外形と流れ性状を調べるため、吹き出 し口の下方に水引糸により座標確認装置を設置し、白 煙噴出器にて気流方向を目視で観察した。



図1 実験装置の概要



図2 火災室の内観

#### 2.2. 測定値の整理方法

ダウンプルームが巻き込む煙量を二つの方法で測定 した。測定方法を以下に示す。

#### 2.2.1. 直接測定法

直接測定法は、煙層境界面において温度および風速 の水平分布を測定して積分するものである。ダウンプ ルーム流量の算出では、質量流束が隣接する測定点と の間は線形であることを仮定して、測定区間 i~i+1 で の質量流束を式(1)で求めた。

$$\rho v_{i,i+1} = \frac{\rho_{i+1} v_{i+1} - \rho_i v_i}{r_{i+1} - r_i} r + \frac{\rho_i v_i \cdot r_{i+1} - \rho_{i+1} v_{i+1} \cdot r_i}{r_{i+1} - r_i}$$
(1)

図3に示すように、噴流の断面が円形であることを 仮定して、式(1)で求めた質量流束分布を中心軸にて回 転させた回転体の体積をダウンプルームの質量流量と する。ダウンプルーム流量と測定した給気質量流量の 差を採り、ダウンプルームが巻き込む煙量 *m<sub>e,dp</sub>を*次式 で求める。



図3 ダウンプルーム流量の直接測定

## 2.2.2. ガス分析法

ガス分析法は、火災室の煙層と下部層、外部での炭 酸ガス濃度を測定し、各層の質量収支式に代入してダ ウンプルームによる巻き込み流量を求める方法である。 火災室内の質量保存と炭酸ガス質量保存に係る基本式 を以下に示す。

・質量収支

| D.P. :                      | $m_{dp} = \widehat{m}_{sup} + m_{e,dp}$                                                                        | (3)  |
|-----------------------------|----------------------------------------------------------------------------------------------------------------|------|
| 火災 P. :                     | $m_p = \widehat{m}_f + m_{e,p}$                                                                                | (4)  |
| 煙層:                         | $m_p = m_{e,dp} + m_{ex,s}$                                                                                    | (5)  |
| 下部層:                        | $m_{dp} + m_{in} = m_{e,p} + m_{out} + m_{ex,a}$                                                               | (6)  |
| 排気:                         | $m_{ex,s} + m_{ex,a} = \widehat{m}_{ex}$                                                                       | (7)  |
| ・炭酸ガス                       | 収支                                                                                                             |      |
| D.P. :                      | $m_{dp}Y_{dp} = \hat{m}_{sup}\hat{Y}_{sup} + m_{e,dp}\hat{Y}_s$                                                | (8)  |
| 火災 P. :                     | $m_p Y_p = \hat{m}_f \hat{F} + m_{e,p} \hat{Y}_{a,p}$                                                          | (9)  |
| 煙層:                         | $m_p Y_p = m_{e,dp} \hat{Y}_s + m_{ex,s} \hat{Y}_s$                                                            | (10) |
| 下部層:                        | $m_{dp}Y_{dp} + m_{in}\hat{Y}_{o} = $ $m_{o}\hat{Y} + m_{o}\hat{Y} + m_{o}\hat{Y}$                             | (11) |
| 排気:                         | $m_{e,p}r_{a,p} + m_{out}r_a + m_{ex,a}r_a$ $m_{ex,s}\hat{Y}_s + m_{ex,a}\hat{Y}_a = \hat{m}_{ex}\hat{Y}_{ex}$ | (12) |
| これらの                        | 収支式を連立し、ダウンプルームが                                                                                               | 巻き込  |
| む煙量 <i>m<sub>e,dp</sub></i> | について解くと次式となる。                                                                                                  |      |
|                             | $\hat{F} - \hat{Y}_{am}$ $\hat{Y}_{am} - \hat{Y}_{am}$                                                         |      |

$$m_{e,dp} = \frac{F - Y_{a,p}}{\hat{Y}_s - \hat{Y}_{a,p}} \hat{m}_f - \frac{Y_{ex} - Y_a}{\hat{Y}_s - \hat{Y}_a} \hat{m}_{ex}$$
(13)

# ダウンプルームによる煙の巻き込み量の測定実験 1. 実験条件

表 1 に実験条件の一覧を示す。全ての実験で吹出し 口は 100×100mm の正方形開口とし、給気流量をほぼ 一定 (6.58~6.88×10<sup>-3</sup> m<sup>3</sup>/s) とした。発熱速度、垂れ 壁深さ、火源高さ、排気流量を調節して、煙層厚さを 195~434mm の範囲で9条件に設定した。このとき、煙 と外気の温度差は 14.1~18.5℃であった。

測定はガス分析法で7条件、直接測定法で4条件で 行った。

### 3.2. 実験結果

#### 3.2.1. ダウンプルームの流れ性状

実験 No.2-9 においては、吹出し口から 0,90,225,360 mm の高さにて風速、温度、炭酸ガス濃度の測定を行った。

## (1)風速分布

図 4 に断面風速分布と流れ性状を示す。吹出し口か ら出た直後の0mmの断面風速分布はトップハット分布 であった。煙層中で下向きに加速されて、煙層の中央 断面で風速が最大となった。煙層の境界面では風速は 三角形分布になった。

煙層に吹き出した給気は周辺の煙を巻き込みながら 下方に向かっていく流れになった。ただし、煙層の境 界面付近では下部層まで連行された煙の一部が浮力に より煙層に戻った。

(2)温度分布

図 5 に温度分布を示す。吹出し口の直下では吹き出 した噴流の影響によって温度の低い領域が形成された。 煙層の中央断面ではダウンプルームが吹き出し直後に 巻き込んだ高温の煙の影響でダウンプルームの中心軸 と煙層の間に高温領域が形成された。

(3)炭酸ガス濃度分布

図 6 に炭酸ガス濃度分布を示す。炭酸ガス濃度分布 は温度分布と概ね相似形で、ダウンプルームの外周部 には高濃度領域が形成された。

| (1) 天阪木口 |     |      |     |       |     |                |                   |                   |      |     |     |  |  |
|----------|-----|------|-----|-------|-----|----------------|-------------------|-------------------|------|-----|-----|--|--|
| 実験       | 煙層  | 煙と外気 | 垂れ壁 | 発熱    | 火源  | 吹出             | 給気                | 排気                | 外気   | ガス分 | 直接測 |  |  |
| No.      | 厚さ  | の温度差 | 深さ  | 速度    | 高さ  | しロ             | 流量                | 流量                | 温度   | 析法  | 定法  |  |  |
| 単位       | mm  | °C   | mm  | kW    | mm  | m <sup>2</sup> | m <sup>3</sup> /s | m <sup>3</sup> /s | °C   |     |     |  |  |
| 2-4      | 224 | 16.3 | 490 | 0.538 | 870 | 0.01           | 0.00677           | 0.0175            | 20.0 | 0   | 0   |  |  |
| 2-5*     | 434 | 16.9 | 730 | 0.605 | 630 | 0.01           | 0.00671           | N.A.*             | 15.5 |     | 0   |  |  |
| 2-6      | 307 | 15.4 | 730 | 0.605 | 630 | 0.01           | 0.00684           | 0.0146            | 15.5 | 0   | —   |  |  |
| 2-7**    | 361 | 16.0 | 730 | 0.605 | 630 | 0.01           | 0.00688           | 0.00951           | 15.7 | _   | -   |  |  |
| 2-8      | 399 | 18.5 | 730 | 0.605 | 630 | 0.01           | 0.00675           | 0.00727           | 15.6 | 0   | —   |  |  |
| 2-9      | 379 | 17.0 | 730 | 0.605 | 630 | 0.01           | 0.00665           | 0.00951           | 16.2 | 0   | 0   |  |  |
| 2-10     | 195 | 14.6 | 490 | 0.470 | 900 | 0.01           | 0.00676           | 0.0174            | 16.5 | 0   | 0   |  |  |
| 2-11     | 246 | 16.7 | 490 | 0.538 | 800 | 0.01           | 0.00658           | 0.0174            | 16.1 | 0   | _   |  |  |
| 2-12     | 374 | 14.1 | 730 | 0.605 | 630 | 0.01           | 0.00669           | 0.00168           | 16.2 | 0   | _   |  |  |

表1 実験条件

\*排気ダクトの吸引口が装置の下方にずれており、下部層からの空気が排気に混入した。\*\*定常状態での炭酸ガス濃度の欠測があった。



図4 風速分布とスケッチ(No.2-9)





3.2.2. 中心軸風速分布、及び中心軸温度分布

実験 No.2-9 では、ダウンプルームの中心軸上の風速 と温度分布を吹出し面から 10mm 間隔で測定した。図 7 に中心軸上風速分布、給気と中心軸上の温度差分布、 及び、給気口から離れた部分での鉛直方向の温度差分 布を示す。ここで、給気温度は吹出し口から 0mm での 測定値である。





給気口から離れた部分での鉛直方向の温度差分布か ら N%法(N=20)で求めた煙層の厚さは 379mm であった。 吹出し風速は 1.28m/s、最大風速は 2.47m/s であり、最 大風速となる測定点と吹出し口からの距離は 90mm で あった。中心軸風速は煙層の中央部にかけて増加し、 その後吹出し口から離れるにつれて風速は減少した。 給気温度は 22.3℃、煙層境界面における中心軸温度の 上昇温度は 2.54℃、中心軸上の最大風速が得られた断 面における火災室温度と中心軸上の温度との温度差は

温度分布(No.2-9) 17.1℃であった。

図6 炭酸ガス濃度分布(No.2-9)

中心軸上風速はダウンプルームの内部と周辺の温度 差の影響で、吹出し面から煙層の中央までは下向きの 浮力を受けて上昇し、煙層の中央よりも下方では上向 きの浮力を受けて減少した。

#### 3.2.3. 煙層厚さと煙の巻き込み量の関係

図 8 に各実験で得られたダウンプルームが巻き込む 煙量を煙層厚さに対して示す。ガス分析法で測定した 煙の巻き込み量は 0.00942kg/s~0.0258kg/s の間であっ た。直接測定法で求めた煙の巻き込み量は 0.0143kg/s ~0.0194kg/s の間であった。

測定結果にはばらつきが大きいが、煙層が厚くなる と煙の巻き込み量が増加する傾向がみられる。また、 煙層が195mm、379mmのとき、二つの方法で測定した 煙の巻き込み量は概ね一致した。





# ダウンプルームによる煙の巻き込み量の予測式 1. プルームの質量流量

自由空間中の火源から生じる浮力プルームの流量は 次式で与えられる<sup>[3]</sup>

$$m_{p,z} = 0.076 Q^{\frac{1}{3}} (z + z_0)^{\frac{5}{3}}$$
(14)

図 9 に示すように、ダウンプルームでは、浮力プル ームを上下反転させて考える。煙層よりも低い温度の 吹き出し気流が持つエンタルピー差が浮力プルームの 発熱速度に相当すると考えると、ダウンプルームの質 量流量は次式となる。

$$m_{dp,z} = 0.076 \{ c_p m_{sup} (T_s - T_o) \}^{\frac{1}{3}} (z + z_0)^{\frac{5}{3}}$$
(15)

## 4.2.2. 仮想点源高さ

吹出し口からの給気によるダウンプルームは吹出し 口が有限の大きさを持っているために、仮想的な点源 が吹出し口よりも上部にあると考える。

Thomas<sup>[4]</sup>の仮想火源高さの予測式を参考にすると、 仮想点源高さは吹出し口の寸法を用いて式(16)となる。

$$z_0 = 1.5\sqrt{A} \tag{16}$$

一方、吹出し口における流量が給気質量流量に一致すると考えると、仮想点源高さは式(17)となる。



図9 ダウンプルームの概念図

## 4.3. 実験値との比較

ダウンプルーム流量の予測式(15)は、給気流量、煙層 と給気の温度差、煙層厚さがパラメーターとなってい る。表1に示すように実験では給気流量、及び煙層と 外気の温度差を固定したため、煙層厚さのみをパラメ ーターとして計算を行った。図10にダウンプルーム流 量の計算値と測定値との比較結果を示す。

Thomas の式(14)から求めた仮想点源高さは 150mm であった。計算値はすべての測定値よりも小さくなっ た。煙層が 0~230mm の間でダウンプルーム流量の計 算値は給気質量流量よりも小さくなった。

吹出し口における流量が給気質量流量に一致するように式(15)で求めた仮想点源高さは 388mm であった。 煙層が 300mm よりも厚いときに計算値と測定値は概ね 一致した。



図10 ダウンプルーム流量の比較

#### 5. 結論

煙層の中に供給された給気によって生じるダウンプ ルームが巻き込む煙量と煙層の厚さとの関係を定量的 に把握するために模型実験を行い、以下の結果を得た。

- ダウンプルーム流量を直接測定法とガス分析法の二 つの方法で測定した。
- ・ 煙層温度、給気量がほぼ一定の条件で煙層厚さを変 化させて実験を行った。ダウンプルームが巻き込む 煙量はばらつきが大きいが、煙層が厚くなると増加 する傾向があった。
- ・ 浮力プルーム流量の予測式を上下反転させてダウン プルームに適用し、実験と比較した。吹き出し口に おける流量が給気量と等しくなるように仮想点源高 さを距離の 5/3 乗に応じて設定すると測定と比較的 一致した。

**記号**:ρ:密度(kg/m<sup>3</sup>)、v:風速(m/s)、r:中心軸からの水平距離(m)、 m:質量流量(kg/s)、Y:炭酸ガス濃度(kg/kg)、F:可燃ガスの燃焼 で生成する炭酸ガスの生成率(kg/kg)、A:吹出し口の面積(m<sup>2</sup>)、 c<sub>p</sub>:定圧比熱(kJ/kg·K)、T:温度(℃)、z:点源からの距離(m)、z<sub>0</sub>: 仮想点源高さ(m)

(統字): ^:測定値、*i*:任意の点に隣接する中心軸に近い測定点、 *j*:任意の点に隣接する中心軸から遠い測定点、*dp*:ダウンプルーム、*sup*:給気、*ex*:排気、*p*:火災プルーム、*f*:可燃ガス、*in*:開口 流入、*out*:開口流出、*e*:巻き込み、*s*:煙層、*a*:空気層、o:外気

#### 参考文献

[1] 日立GEニュークリア・エナジー株式会社、HLR-115訂1 補 機火災を模擬した実規模燃焼試験、H26年1月

[2] Audouin L, Rigollet L, Prétrel H, Le Saux W and Röwekamp M (2013) OECD PRISME project: Fires in confined and ventilated nuclear-type multi-compartments—Overview and main experimental results. Fire Safety Journal,

[3]Cetegen, B.M., Zukoski, E.E. and Kubota, T. : Entrainment in the Near and far Field of Fire Plumes, Combustion Science and Technology, Vol. 39, 305-331, 1982

[4]Thomas, P.H. et al : Investigations into the Flow of Hot Gases in Roof Venting, Fire Research Technical Paper, No.7, HMSO, 1963